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A N  E X P L I C I T  SOLUTION FOR THE LAGRANGE MULTIPLIERS 
ON THE SINGULAR SUBARC OF AN OPTIMAL TRAJECTORY 

SUMMARY 

The problem of optimal thrust programming of a single stage rocket- 
powered vehicle to achieve maximum payoff at specified end conditions is dis- 
cussed. 
gravitational field. The Lagrange multipliers are analytically determined for  
the so-called singular arc and the mass flow rate to maintain a singular a rc  
condition is derived. These Lagrange multipliers are directly related to the 
steering program by algebraic equations. 

The vehicle is assumed to operate in vacuo in an inverse square 

I NTRO DU CT I ON 

An early problem posed by rocket technology to the mathematical disci- 
plines was the determination of the rocket trajectory which maximized the 
difference between the initial and final values of some function of the trajectory 
end points. This problem, first treated by the calculus of variations, has been 
the subject of numerous research papers. 

A large amount of work was done in attempts to optimize the flight pro- 
file as a function of time under the assumption that the magnitude of the thrust 
w a s  constant. 
direction of thrust as a function of time, but not the magnitude of thrust as a 
function of time. 

I That is, the optimization was  concerned only with determining the i 

A s  the theoretical developments became more sophisticated, the case of 
variable thrust magnitude was also treated. In this case, the thrust is assumed 
to be bounded between upper and lower limits; the lower limit may be zero 
(a  coasting arc) but the upper limit is usually assumed to be finite so that the 
possibility of impulsive velocity change is excluded. 
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Concurrently with these efforts, work progressed in directions which may 
be regarded as perturbational effects of the basic problem. Such effects include 
aerodynamic drag, non-spherical gravitational fields, etc. These effects are 
not par t  of the present study, and in this report  the vehicle will be assumed to 
operate in vacuo over a spherical earth. 



It is well  known that if the formulation of the optimal trajectory problem 
allows variable thrusting maneuvers to occur , three types of subarcs , which are 
categorized by thrust  level, may occur in the overall flight profile. The first 
possibility is arcs which have constant (non-zero) thrust  levels over a non- 
zero portion of the trajectory. The second possible type of arc is the zero 
thrust  arc. This possibility can be easily justified on an intuitive basis by 
considering an orbit  transfer maneuver with a high thrust vehicle between widely 
separated orbits. 

The third type of a r c  is the so-called singular subarc of an optimal tra- 
jectory. This a r c  occurs when the portion of the Hamiltonian which yields the 
direction or  magnitude of thrust as a function of time (via Euler 's  equations) 
vanishes identically. In this case, the thrust level is not immediately available 
from the Hamiltonian and further work must be done to determine the magnitude 
of thrust as a function of time. 

A s  long as the problem is formulated in the calculus of variations frame- 
work , Lagrange multipliers o r  equivalent auxiliary variables must be intro- 
duced to determine the direction of thrust as a function of time. Much of the 
difficulty in the numerical calculation of optimal trajectories arises from the 
fact that the initial values of these Lagrange multipliers are not known and the 
resulting split boundary value problem requires repeated integrations of the 
equations which result from the theory. Any technique which solves analytically 
for  the multipliers (hence, thrust direction) as a function of the state variables, 
time, and constants of integration would greatly reduce the labor and time 
involved in numerical isolations of optimal trajectories. 
tion of the three types of arcs which may occur along an optimal trajectory is 
particularly well suited to statements about which cases allow such an analytic 
solution of the Lagrange multipliers. The case of zero thrust  is simplest, and 
yielded such a solution before the other types. 
several years [ 1 , 21 .* 

The above classifica- 

This solution has been known for  

t W. E. Miner appears to be the first to have obtained this determination. The 
results of his work are reported in Aeroballistics Internal Note 20-63, Trans- 
formation of the A-Vector and Closed Form Solution of the A-Vector on Coast 
Arcs, George C. Marshall Space Flight Center, Huntsville, Alabama, 1963. 
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The case of constant (non-zero) thrust has not, as yet, been completely 
solved in the sense that is referred to here. A solution for  three of six Lagrange 
multipliers in terms of state variables and constants of integration has been 
achieved through the use of a vectorial integral. 

It is the third case that is treated in this paper. It is shown that for 
the case of the singular arc of an optimal. trajectory, a complete analytic 
solution for  the steering program is possible. The solution is demonstrated in 
the form of three simultaneous algebraic equations. Subsidiary equations then 
yield the additional Lagrange multipliers in te rms  of the solutions to these 
equations. Questions concerning the conditions under which these arcs actually 
do occur as segments of the trajectory are not discussed. 
siderations, the reader is referred to  References 3 ,  4 and 5. 

For such con- 

The analytic solution presented for the steering program is applicable to 
numerical trajectory calculations. 
necessary to integrate the differential equations which normally are used to 
calculate the Lagrange multipliers over that portion of the trajectory which 
fulfills the definition of a singular subarc. 

Using these algebraic equations, it is not 

FORMULATION OF THE PROBLEM 

We wish to determine the extremumvalue of the difference between the 
initial and final values of some function of the end points, G. 
fuel expenditure is minimized if we choose G as the difference between the 
initial mass ,  m , and the final mass ,  m 

0 f '  

For example, the 

i. e. , 

G = m  - m  
0 f '  

In order  to specify the constraints to which the rocket vehicle is subjected, w e  
w r i t e  the rocket equation as 

--c 
T A  - v = - u  - g  m T  

3 



where 

4 

V = velocity 

T = t h r u s t  

m = mass 

u = unit vector in the thrust direction 

g = acceleration of gravity 

A 

T - 
The thrust, T, is assumed to satisfy the inequality 

5 T 5 T  
min max 

T 

The velocity, is related "3 the posit-m vector, T, by 

t -  r = V  . 

Finally, the thrust, T, and mass flow rate, mc, are related by 

T = - & c  . (3)  

Using the standard techniques of variational calculus, w e  now introduce 
vector Lagrange multipliers and and a scalar multiplier cr to form the 
Lagrange fundamental function, F ,  as 
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The problem we now wish to examine is to determine the extremal values of 

To initiate this study we first r e w r i t e  F in the more tractable scalar nolation 
by introducing 

4 

= (x ,  y, 2) 

A u = (cos y cos 6, s i n y  cos 6 ,  sin 6) 
T 

4 

A 
where y and 6 are control angles (i. e. , direction angles of the vector u ) 
as shown in the figure below and subscripts indicate components, not partial 
derivatives. 

T 
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We may now rewr i te  F as 

F = hi(Vx - T/,m cos 6 cos y + g 2 + h z ( t  - T/m cos 6 s i n y  + g ) 
Y Y 

+ V3(h - Vz) + CJ(T/C + m) . (9) 

The Euler-Lagrange equations, a necessary condition for an extrema1 
path, are 

%(%)-e = o  

where the variables y. are V V , Vz,  x, y, Z, y ,  6, T, andm.  
1 xs Y 

Applying the Euler-Lagmnge equation to the variables V V , and V xs Y Z we have 

hi + v i  = 0 

h2 + v2 = 0 

h 3 + v 3 = O  . (13) 

Defining the ordered set (hi, Az, h3) as the vector AT and ( vi, vz,  v3) as the 
-L 

vector vT , we can write equations (11) , (12) , and (13) as 

- 4  

h + v  = o  . 
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Turning our attention to the variables (x, y, z) for  the Euler-Lagrange 
equations, we  find 

These may be conveniently rewritten in matrix notation as 

Using our Eevious notation for the vectors 
matrix by A": we have 

and T, and abbreviating the 

The Euler-Lagrange equation for variable y yields 

T/m(AI cos 6 sin y - A2 cos 6 cos y) = 0 . 
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For a powered arc ,  T/m is not equal to zero. If w e  assume that 

we  obtain 

Similarly, for variable 6 

T/m(hi sin 6 cos y + A2 sin 6 sin y - h3 cos 6) = 0 . 

Again, for T/m f 0, we have 

Ax 
hi cos y + h2 s i n y  tan6  = 

Eliminating y from this equation by use of equation ( 16) we obtain 

f As t a n 6 =  

It may now be seen that the variables y and 6 have been related to the Lagrange 
multipliers via equations (16) and (17) . 

The Euler-Lagrange equation cannot be applied directly to variable T, 
since T enters linearly. Writing the equation for F as 
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(where h has been written for dhf + A$ + Ai )we see that F can become 
independent of T for certain situations; namely, i f  the coefficient of T vanishes 

If the coefficient of T vanishes, the value of T becomes indeterminate and we 
may wri te  (at the moment) only that T is bounded within the physical limits of 
the problem, i. e. , 

T s T 5 T  
min max 

The sign ambiguity in the expression a/c r A/m = 0 can be resolved by 
the Weierstrass test. Originally 

tan y = hz/hl 

so that 

f hi cos y = 
QT$- 

and 

with 

sign (cos y )  = sign (sin y )  . 

Then 

f As tan 6 = 

9 

'\, 

. , t 



giving 

sign (tan 6) = sign (cos y )  . 

Then 

J T q  
hf + A$ + A3 

cos 6 = f 

and 

with 

sign (cos 6) = sign (s in  6) . 

In order  to pursue the question of sign choice further, w e  may w r i t e  F as 

F = A i ( V x +  g,) + A2(+ + g ) + A3(+  z z  + g ) + v i ( k  - VX’ 
Y Y  

+ v2(9 - v ) + V S ( i  - VZ) + am 
Y 

+ T[ a/m - l /m (hi cos 6 COS y + & cos 6 sin y + h3 sin 6) 3 . 

The Weierstrass condition now requires that for a minimum the function 

- F(t, Y, 9)  E = (t, y, 9, y8, 9:;:) = F(t, Y:;:, i z : )  
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be positive for all  sets y"' sufficiently near y and for all sets y . 
member of this equation vanishes under consideration of the strong variations 
of the controls y and 6 since i, and 6 do not appear. Thus 

The last 

For y. f y  and y. Z 6 we have 
1 1 

c 

yi = Y l  

so that 

T/m(Al cos 6 cos y + h2 cos 6 s i n y  + A3 sin 6) 

w e  have 

cos 6 ( A l  c o s y  + & s h y )  2 0 . 

Then 

cos 6 (* djhf + h i )  2 0 



111l1l1lll Ill 111l11111ll111111111111lllllllllllllll1lll111 Ill Ill1 I1 IIIII I II 

or 

sign = sign cos 6 . 

Choosing 

gives 

Ai cos 6 c o s y  + A z  cos 6 siny + A 3  s i n 6  2 0 

o r  

then 

Our function F now becomes 

and the condition for the singular arc  is 

a/c - A/m = 0 . 
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The remaining sign ambiguity, f m, corresponds to the physical choice of 
initial firing direction. 
Further discussions will  be restricted to the case of the singular arc. 

This cannot be expected to be a result of mathematics. 

O u r  final variable, m, gives the equation 

& - T/m2(Al cos 6 cos y + & cos 6 sin y + A3 sin 6 )  = 0 . 

Again, expressing y and 6 in  terms of AI, A2, and A3 we have 

b =F T/m2 A = 0 

which becomes - by our discussion of sign choice 

b - T / m 2 A = 0 .  

Before proceeding to the solution for the multipliers, we note that from 
equation ( 14) 

t - .. 
A = - v  

so that equation ( 15) may be written 

The matrix x" is too general for our purposes. We specify a Keplerian 
field 

13 



where 1.1 is the gravitational parameter MG, i. e. , the mass of the attracting 
i planet multiplied by the universal gravitational constant. From this definition 

6.. 3x.x. 
( i , j  = i , 2 , 3 )  

where 

x. = x o r y o r z  
1 

r has been written for dx? + y2 + 22 

6..  is the Kronecker delta. 
1J - .b -c 

We can now w r i t e  the expression A"A under the Keplerian field assump- 
N d  

tion, A A ,  as 

p-+ 3 x2 -3Ewry 
r5 9 

-3pyz 
r5 9 
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Equation (20) may now be written as 

We may also rewrite the basic equation of motion, equation (I), into a 
form not involving the angles y and 6 by use of equations (7), (16), and (17) . 
Thus 
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The principal results of this section may now be summarized as 

4 

T C  r - .. 
r - - - + p - - - O  , m h  2 -  

a h  
C M  

- - = o  . - 

Equation (24)  specifies that we remain on a singular arc .  

Before proceeding to the integration of this system of equations, it is 
worthwhile to consider the following. In equation (21) we have three position 
and three velocity components which must be initially specified.+ Innequations 
(22) and (23)  we must specify the initial values of the vectors h , x , and of the 
scalars u and T (or  6). Since the equations 
in the Lagrange multipliers a r e  homogeneous, one initial value is arbitrary. 
Furthermore, equation (24) gives a relationship between h and u which must 
be maintained, thus reducing the number of initial conditions to 12. For  a 
solution which yields the Lagrange multipliers a s  an algebraic relationship, 
we may expect to obtain six independent constants of integration. 

This gives 14 initial conditions. 

D E R I V A T I O N  OF INTEGRALS 

From equation ( 23) we have 

= o  , Th m k -  - m 
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l and from equation (3)  

m u + =  C = 0 , 

I 

I Using equation ( 2 4 ) ,  equation (26)  becomes 

m u + y = o .  TA 

Adding equations (25)  and (27)  w e  obtain 

d  ma) = 0 

o r  

m u =  Ci 

where C, is an integration constant. 

To obtain our second integral, we note that the Euler-Lagrange equations 
are explicitly independent of time. From the general theory of variational 
calculus we know that 

10 

i= 1 
F - 9.  F. = C, 

1 Yi 

where 

F is given by equation (9) 

y. represents V V , Vz, x, y, z, y, 6,  T, orm.  
1 x’ Y 
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Furthermore, since F is identically equal to zero, the above equation becomes 

10 -c y .  F. = C2 
i= I 1 Y i  

By differentiating and summation we  obtain 

Ai" + AzV + A,* Z + Vik + v2i + v3i 4- 0r;l = - c2 . 
Y 

which may be written as 

+ 
Taking the dot product of with *e as given by equation ( 2  1) and inserting 

the result into equation (29) we find 

The term in parentheses of this equation may be written 

= irm + um 

d 
dt 

-- - (ma)  = O  , 

18 



where equation (23) has been used. Thus, our second integral is 

Following Pines [,6] , w e  begin derivation of the third integral by noting 
that 

4 4  

Substituting > from equation (30) we have 

Takins the dot product of equation (21)  with r, the dot product of equation (22) 
with rand  subtracting, gives 

so that 

- -  
A - r  I d  r , - - + - -  T 

1 - 1 7 = - -  3 dt 3m ( A ' r - h . j r ) + - - - ~  . 
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4 +  

from this expression into equation ( 3 1 )  gives A - r  
1.3 Inserting p 

o r  

d - 4  T - ( 2 ~  r + A *  T>= 3 c 2 + -  A . dt m 

Now, using the defining equation 
be written as 

d ? - - - - p  
- - ( 2 h  r + A  - r )  = 3C2 dt 

for T in terms of m, equation ( 3 ) ,  this may 

m 
- c A m  . 

To perform the integration we must f i rs t  note that equations ( 2 4 )  and ( 2 8 )  
yield 

( 3 3 )  h =  % 
C 

making A a constant. Equation ( 3 2 )  now integrates to yield 

- 4 - 4  mO 

m 2 h  r + A I. = 3C2t + C i  I n  -+ C 3  . ( 3 4 )  

To obtain our final integral, we return to equations ( 2 1 )  and ( 2 2 ) .  From 
these 

4 -  + - h x r  h x r  + p ~ = 0  r 
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Subtracting gives an immediately integrable equation yielding 

- . - - - P r ) - z  

h x r - h x r  = C4 

4 

where C4 = (C4, C,, c6) is a vector integration constant. 

To determine if the constants C4, C5, and (26 a r e  independent, we apply 
the Jacobi test. Thus 

c4 = jl2z - i3y - h2i + A& 

c5 = i3x - i i Z  - A3k + A i i  

c, = i1y - i2x - hly + A2k . 
Now 

ac ---fi=O ac ac ac ac ac 
ax a Y  * az ax a Y  
- = i 3  , -=-ii , - - ; -5=-h3,  -"=o , a ; = h l  

ac ac a c , = o  
az Y $=A2 ' aj, 

-=-i2, ac -Lii ac , 
ax a Y  az 

we may write 
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A non-vanishing sub-determinant is 

0 z -y 

A = -Z 0 x 

y -x 0 

in general, so our integration constants C4, C5, and c6 a r e  independent. 

= ZXY - ZXY E 0 

The preceding statement cannot be taken to imply that w e  may solve for 
- - -Dy 4 

hi, &, and A3 in te rms  of A , r ,  r ,  and Cd. To see this we write equation (35) as 

Now 

T so that w e  cannot invert the coefficient matrix of (iI, jlz, i3) .  his situation 
occurs in similar fashion with the angular momentum integral of the three-body 
problem. 

DETERMINATION OF THE IAGRANGE MULTI PLIERS 

The purpose of this section is to demonstrate three independent equations 
The f i r s t  such which involve Lagrange multipliers &, A2, and A3 algebraically. 

equation, equation (331, has already been derived. 
from equation (35). From this relationship we obtain 

The second will  be derived 
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4 t - D  

since r ' ( A  x r ) = O  . 
To obtain our third relationship we  first note that from equation (35) we  

obtain 

4 

t - 7  r x (i, x 3  = F x ( E 4 +  A x r )  , 
or 

t -  Inserting r - i from equation (30) into this expression gives 

Now taking the cross  product of ;with equation (35) gives 

4 -  

Introducing r A from equation (34) gives 

m 
( r .  r ) h  = -  

2 

7 
Eliminating h between equation (37) and (38) under the assumption that 

r - i- 20 gives 
- 4  
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t ? 

This equation can now be regrouped to give the form 

The las t  two members of this equation can be written as 

* - D  -- 4 

= - (A x r )  * ( E  x r ) r  

where we have used 

Using the final result, equation (39) may be written a s  

24 



- - - r  

Since T'Z 0, the coefficient must vanish. Introducing A x r back into the 
coefficient yields 

Equations (33) ,  (36), and (40) now define the Lagrange multipliers 

Ai, A2, and A3 in te rms  of r ,  r , m, and the integration constants. 
multiplier (T comes from equation (28) and vl, v2, v3 can be obtained from 

equations (11) , (12), and (13) once A is computed from equation (35).  

- 9  The 
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DERIVATION OF THE M A S S  FLOW RATE EQUATION 

The preceding information is not sufficient for a complete solution of 
the problem for we do not yet know either m or T as a function of the problem 
variables. The necessary information is available, though obscure. 

From equation (24),, which is the requirement that the singular a r c  be 
followed, we  have 

ir i, A n i  - - - + 2 = 0 .  c m m  

Inserting the values for iT and m we find that 

i = O  

or A is a constant which 

L 

5;'. 5;'- (?)' 
w e  have ascertained from equation (33) .  Furthermore 

9 
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so that 

and 

From equation (22) w e  obtain 

The derivative of equation (42)  is 

but from equations (41) and (22)  

26 



so that equation (43) may be written 

4 + *  - 5 ( T -  r ) ’ ( r -  r )  = o . 

By use of equation (34) ,  the previous equation may be written 

The derivative of equation (44) is 
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Now c Z 0 for a powered arc ,  and assuming 

we  can solve for  m, with m given by equation (44) , if 

From equation (42), as  noted by Corben [7] , w e  may wri te  

Since the left side of this equation is non-negative, we can w r i t e  the angle be- 

tween h and as a and conclude 
- 
I - 3 cos2 a 2 0  

o r  

I 
3 
- 2 C 0 S 2 Q  . 

Our criterion of equation (46) becomes 

c o s 2 a f  3/5 . 

Since this condition is excluded by the previous inequality, w e  need only insure 
that 

to s'olve for m; m is given by equation (44) .  
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CONCLUSIONS 

The general problem of an optimal rocket trajectory in vacuo in an 
inverse square gravitationai field is composed of three possible types of seg- 
ments. The first of these is the coasting arc, and, for this case,  a complete 
determination of the Lagrange multipliers as algebraic functions of the state 
variables, time, and integration constants has been obtained [ 1, 21. 

The second case,  sub-arcs of constant thrust, is most important from 
the practical standpoint and has not, as yet, yielded an analytical solution. 

The third case is sub-arcs of optimal intermediate thrust (singular 
sub-arcs) and this area has been treated in this report. It has been shown that 
integrals which exist in the literature, equations (28)  , ( 30),  (34 ) ,  and (35 ) ,  are 
sufficient to explicitly yield the set of Lagrange multipliers which govern the 
guidance law along an optimal trajectory. The simultaneous algebraic equations 
governing the Lagrange multipliers associated with dynamical constraints are 
equations ( 33) , (36)  , and ( 4 0 ) .  Once this set of equations has been solved, 
equations ( 11) , ( 12), ( 13) , and ( 28) then yield the additional multipliers which 
were associated with kinematical constraints in the original formulation. Equa- 
tions ( 16) and ( 17) relate the Lagrange multipliers to the thrust direction angles. 
Finally, equation (45 )  supplies necessary information about the mass flow rate 
which is required to maintain the singular arc condition. Using these equations 
it is possible to compute an optfmal singular subarc without encountering the 
difficulties associated with the usual split boundary value problem. 

George C .  Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, February 20 , 1967 
933-50- 0 1- 00-62 
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